Shared Ensemble Learning Using Multi-trees
نویسندگان
چکیده
Decision tree learning is a machine learning technique that allows us to generate accurate and comprehensible models. Accuracy can be improved by ensemble methods which combine the predictions of a set of different trees. However, a large amount of resources is necessary to generate the ensemble. In this paper, we introduce a new ensemble method that minimises the usage of resources by sharing the common parts of the components of the ensemble. For this purpose, we learn a decision multi-tree instead of a decision tree. We call this new approach shared ensembles. The use of a multi-tree produces an exponential number of hypotheses to be combined, which provides better results than boosting/bagging. We performed several experiments, showing that the technique allows us to obtain accurate models and improves the use of resources with respect to classical ensemble methods.
منابع مشابه
Random Ordinality Ensembles A Novel Ensemble Method for Multi-valued Categorical Data
Data with multi-valued categorical attributes can cause major problems for decision trees. The high branching factor can lead to data fragmentation, where decisions have little or no statistical support. In this paper, we propose a new ensemble method, Random Ordinality Ensembles (ROE), that circumvents this problem, and provides significantly improved accuracies over other popular ensemble met...
متن کاملDevelopment of an Ensemble Multi-stage Machine for Prediction of Breast Cancer Survivability
Prediction of cancer survivability using machine learning techniques has become a popular approach in recent years. In this regard, an important issue is that preparation of some features may need conducting difficult and costly experiments while these features have less significant impacts on the final decision and can be ignored from the feature set. Therefore, developing a machine for p...
متن کاملBeam Search Extraction and Forgetting Strategies on Shared Ensembles
Ensemble methods improve accuracy by combining the predictions of a set of different hypotheses. However, there is an important shortcoming associated with ensemble methods. Huge amounts of memory are required to store a set of multiple hypotheses. In this work we devise an ensemble method that partially solves this drawbacks. The key point is that components share their common parts. For this ...
متن کاملEnsemble Classification and Extended Feature Selection for Credit Card Fraud Detection
Due to the rise of technology, the possibility of fraud in different areas such as banking has been increased. Credit card fraud is a crucial problem in banking and its danger is over increasing. This paper proposes an advanced data mining method, considering both feature selection and decision cost for accuracy enhancement of credit card fraud detection. After selecting the best and most effec...
متن کاملEnhancing Multi-Class Classification of Random Forest using Random Vector Functional Neural Network and Oblique Decision Surfaces
Both neural networks and decision trees are popular machine learning methods and are widely used to solve problems from diverse domains. These two classifiers are commonly used base classifiers in an ensemble framework. In this paper, we first present a new variant of oblique decision tree based on a linear classifier, then construct an ensemble classifier based on the fusion of a fast neural n...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2002